Salt excess causes left ventricular diastolic dysfunction in rats with metabolic disorder.

نویسندگان

  • Hiromitsu Matsui
  • Katsuyuki Ando
  • Hiroo Kawarazaki
  • Ai Nagae
  • Megumi Fujita
  • Tatsuo Shimosawa
  • Miki Nagase
  • Toshiro Fujita
چکیده

Metabolic syndrome is a highly predisposing condition for cardiovascular disease and could be a cause of excess salt-induced organ damage. Recently, several investigators have demonstrated that salt loading causes left ventricular diastolic dysfunction associated with increased oxidative stress and mineralocorticoid receptor activation. We, therefore, investigated whether excess salt induces cardiac diastolic dysfunction in metabolic syndrome via increased oxidative stress and upregulation of mineralocorticoid receptor signals. Thirteen-week-old spontaneously hypertensive rats and SHR/NDmcr-cps, the genetic model of metabolic syndrome, were fed a normal salt (0.5% NaCl) or high-salt (8% NaCl) diet for 4 weeks. In SHR/NDmcr-cps, salt loading induced severe hypertension, abnormal left ventricular relaxation, and perivascular fibrosis. Salt-loaded SHR/NDmcr-cps also exhibited overproduction of reactive oxygen species and upregulation of mineralocorticoid receptor-dependent gene expression, such as Na(+)/H(+) exchanger-1 and serum- and glucocorticoid-inducible kinase-1 in the cardiac tissue. However, in spontaneously hypertensive rats, salt loading did not cause these cardiac abnormalities despite a similar increase in blood pressure. An antioxidant, tempol, prevented salt-induced diastolic dysfunction, perivascular fibrosis, and upregulation of mineralocorticoid receptor signals in SHR/NDmcr-cps. Moreover, a selective mineralocorticoid receptor antagonist, eplerenone, prevented not only diastolic dysfunction but also overproduction of reactive oxygen species in salt-loaded SHR/NDmcr-cps. These results suggest that metabolic syndrome is a predisposed condition for salt-induced left ventricular diastolic dysfunction, possibly via increased oxidative stress and enhanced mineralocorticoid receptor signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Onl_Er_JAH3_777 1..14

Methods and Results-—We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr/Lepr (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared w...

متن کامل

Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome.

Calorie restriction (CR) can modulate the features of obesity-related metabolic and cardiovascular diseases. We have recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. DS/obese rats develop hypertension and manifest left ventricular remodeling and diastolic dysfunction, ...

متن کامل

Exercise intolerance in rats with hypertensive heart disease is associated with impaired diastolic relaxation.

A decrease in functional capacity is one of the most important clinical manifestations of hypertensive heart disease, but its cause is poorly understood. Our purpose was to evaluate potential causes of hypertension-induced exercise intolerance, focusing on identifying the type(s) of cardiac dysfunction associated with the first signs of exercise intolerance during the course of hypertensive hea...

متن کامل

AT1 receptor antagonism attenuates target organ effects of salt excess in SHRs without affecting pressure.

Our recent studies have demonstrated that salt excess in the spontaneously hypertensive rat (SHR) produces a modestly increased arterial pressure while promoting marked myocardial fibrosis and structural damage associated with altered coronary hemodynamics and ventricular function. The present study was designed to determine the efficacy of an angiotensin II type 1 (AT(1)) receptor blocker (ARB...

متن کامل

Progressive diastolic dysfunction in the female mRen(2). Lewis rat: influence of salt and ovarian hormones.

This study determined the contribution of chronic salt loading and early loss of ovarian hormones on diastolic function in the hypertensive female mRen(2). Lewis rat, a monogenetic strain that expresses the mouse renin-2 gene in various tissues. Estrogen-intact mRen2 rats fed a high salt (HS) (8% sodium chloride) diet exhibited early diastolic dysfunction when compared to normal salt-fed (NS) (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 52 2  شماره 

صفحات  -

تاریخ انتشار 2008